Comment on "Blind source separation based on endpoint estimation with applications to the MLSP 2006 data competition"
نویسندگان
چکیده
This note illustrates some shortcomings of the criterion proposed in “Blind source separation based on endpoint estimation with applications to the MLSP 2006 data competition” when the number of samples is finite. This algorithm considers mutually independent sources with semibounded support, however, even for a sufficient sample size for which the finite bound of the support of the density of the output can be estimated accurately, the endpoint estimate nearest to the mean might be in the unbounded side of this density. In that case, the superadditivity of the least absolute endpoint estimate is usually violated, causing the loss of the contrast function property and of the capability of discriminating hidden sources, for practical versions of this criterion.
منابع مشابه
Blind source separation based on endpoint estimation with application to the MLSP 2006 data competition
The problem of blind source separation is usually solved by optimizing a contrast function that measures either the independence of several variables or the non-gaussianity of a single variable. If the problem involves bounded sources, this knowledge can be exploited and the solution can be found with a customized contrast that relies on a simple endpoint estimator. The minimization of the leas...
متن کاملCalculation of Leakage in Water Supply Network Based on Blind Source Separation Theory
The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 74 شماره
صفحات -
تاریخ انتشار 2011